

Abstracts

A Temperature Noise Model for Extrinsic FETs

B. Hughes. "A Temperature Noise Model for Extrinsic FETs." 1992 Transactions on Microwave Theory and Techniques 40.9 (Sep. 1992 [T-MTT]): 1821-1832.

A resistor temperature noise model for FETs has been successfully applied to extrinsic FETs to predict the frequency dependence of minimum noise figure, F_{min} , and associated gain, G_{opt} . The model gives a fixed relationship between F_{min} and G_{opt} , with one fitting parameter T_d . An extensive comparison to published results shows that the majority of FETs can be modelled with effective T_d values (the temperature of the output resistor) between 300 and 700 K for all of frequencies (8 to 94 GHz), gate lengths (0.8 to 0.1 μm) and material types examined. The analysis shows that InP-based MODFETs exhibit significantly lower F_{min} and higher G_{opt} than conventional and pseudomorphic GaAs-based MODFETs of the same gate length. The results suggest a high f_{max} is a key factor for low noise figure.

[Return to main document.](#)

Click on title for a complete paper.